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Abstract

Wildfires produce large amounts of air pollution via smoke, which can

travel far beyond the original fire location. This paper studies the causal

effect of wildfire smoke exposure on mortality in Mexico. I merge satellite

image data on wildfire smoke plumes with administrative death records and

leverage high-frequency variation in smoke exposure within municipalities

over time. Using data from air pollution monitors, I show that wildfire

smoke over a municipality increases PM2.5 air pollution by 11%. At the

same time, mortality increases by 1.87 deaths per million on the day of

smoke, and by an additional 1.69 deaths per million over the next three

days. The mortality effects are concentrated among individuals over 60 years

old, with the largest effects for those over 80 and no effects for those below

60. The main effect on short-term mortality in Mexico is high compared

to prior studies in developed countries. Within Mexico, the effects are also

larger for individuals in poorer municipalities. Overall, this paper provides

new evidence on short-term mortality effects of wildfire smoke across all

age groups in Mexico, and suggests key heterogeneity in the harms of air

pollution by income.

∗PhD Candidate, Department of Economics, University of Texas at Austin,
m.t.nohr@gmail.com.
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Air pollution is considered to be one of the largest environmental risk factors

to human health (McDuffie et al., 2021), and wildfires are the largest single source

of fine particulate air pollution. The frequency of extreme wildfire events has in-

creased dramatically in recent years, and with the effects of climate change on

drought conditions, wildfires are projected to become even more frequent and de-

structive. The negative effects of this increase and the associated effects on air

pollution are unlikely to be distributed equally. While pollution affects all coun-

tries and regions of the world, people in lower income countries are typically more

affected. Lower income countries suffer from higher levels of baseline pollution, and

they simultaneously lack the resources to combat this high pollution or address its

negative effects on health. Despite these concerns, many studies on air pollution

are conducted in high income countries like the United States, raising concerns

about the external validity of their results to less developed countries.

Small particulate air pollution is thought to be the most harmful to human

health, and wildfire smoke is a major and growing source of this pollutant. In

North America, for example, the average share of fine particulate matter coming

from wildfire smoke increased from 9% in 2002-2011 to 18% in 2012-2021.1 While

the average share of fine particulate matter coming from wildfire smoke was 9%

from 2002-2011, it increased to an average 18% of all fine particulate air pollution

over the next ten years. This example is illustrative of global trends in increasing

wildfire smoke pollution, and Mexico is also directly affected, as smoke from North

American wildfires travels hundreds of kilometers and frequently leads to increased

air pollution in Mexico.

This paper estimates the causal effect of air pollution on short-term mortal-

ity, using plausibly exogenous variation in air pollution from wildfire smoke. My

analysis combines nationwide administrative mortality records with satellite de-

rived smoke data from the U.S. National Oceanic and Atmospheric Administration

(NOAA) Hazard Mapping System. By overlaying smoke plumes with municipality

outlines, I construct a municipality-level smoke exposure variable, that categorizes

days as either smoke days or non-smoke days.

1Based on U.S. data from the EPA:https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data
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Studying air pollution from wildfire smoke in this setting has several advantages.

First, the large, high-frequency dataset I construct allows me to estimate short-

term mortality. Spikes in air pollution from wildfire smoke are plausibly exogenous,

driven by the combination of fire location and prevailing wind patterns, allowing

credibly causal estimates of the effect on mortality. Second, mortality records

provide reliable, daily observations that cover all of Mexico, and are available over

a long period (2007-2019), resulting in enough power to estimate mortality effects,

which can be difficult as death is such a rare event. Records are available for

all ages, and all municipalities in Mexico, allowing me to study mortality effects

for different age groups and heterogeneity by municipality-level characteristics.

Additionally, the data contain cause of death identifiers, which I use to study

potential mechanisms.

I first show that smoke plume coverage increases ground-level air pollution.

To do so, I combine the NOAA data on smoke plumes with data from Mexico’s

network of pollution monitoring stations. I find that smoke plume coverage leads

to a large, transient shock in ground-level air pollution. Smoke coverage increases

small particulate air pollution (PM2.5) by 2.27µg/m3, a 10.8% increase over non-

smoke days (.21 standard deviation (SD)). Larger particulate air pollution (PM10)

also increases by an average of 3.72µg/m3, which is a 7.9% increase over non-smoke

day PM10, or an increase of .15 SD. I also find a small increase in ozone levels on

days of smoke coverage by 2.7% over non-smoke days, a .05 SD increase, and no

statistically significant effect on SO2.

For my first main result, I study the effects of wildfire smoke on mortality. The

analysis shows that smoke increases mortality significantly, and mortality effects

are concentrated in the elderly population. One day of wildfire smoke increases

mortality by 1.93 deaths per million on the same day, for those who are over 60

years old. Death rates stay elevated on the first few days after a smoke day, resulting

in total excess mortality of 3.54 deaths per million over 3 days, from one day of

smoke coverage. This is an increase of 4.3% over the average daily mortality rate.

I find no increase in mortality for age groups under 60 years old, but among those

over 60, I find the largest mortality effects in the older population groups. Among

ages 60-69, three day excess mortality is 1.76 deaths per million, an increase of 5%
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over the daily average. For those 70-79 years old, wildfire smoke leads to an excess

mortality of 2.40 deaths per million, an increase of 3% over daily average. For

those over 80 years old excess mortality is 12.08 deaths per million (5.0% increase).

I find no evidence of offsetting decreases in mortality over the month following a

smoke event, suggesting that the mortality effect is not driven by harvesting.2

Next, I study increases in mortality by cause of death for those over 60 years old.

I find that the largest increase in mortality is among individuals with circulatory

causes listed as their cause of death.3 I don’t find a statistically significant increase

in respiratory causes, which is consistent with the interpretation that smoke days

affect people with pre-existing conditions. Under this explanation, wildfire smoke

is a stressor that affects those individuals most who are already weak from an-

other illness, and causes their death. Mortality from external causes, such as car

accidents, does not increase. I also find an increase in a broad summarizing cate-

gory of ”all other internal causes.4” These results are consistent with prior research

conducted in the United States by Deryugina et al. (2019), who find increases in

mortality from air pollution for circulatory causes, cancer, and internal causes.

Comparing my results to mortality estimates of smoke induced air pollution

from the United States, I find that the mortality increase from air pollution in

Mexico is much larger. Miller et al. (2024) find an increase of 1.33 deaths per

million over 65 over 3 days, from one day of light smoke coverage. My estimate for

Mexico of 3.54 deaths per million over 60 is over twice as large, highlighting the

importance of studying the impacts of wildfire smoke in different settings.5 There

are different possible explanations why people in less developed countries could be

2Harvesting is when weak individuals die slightly earlier than they would have without the
short-term shock in air pollution, which can lead to positive estimates for the short-term mortality
effect from smoke, which would be offset by a equally sized decrease in mortality later, when those
individuals would have died otherwise.

3The most common cause of death in this category is a heart attack, the category also includes
strokes and other circulatory system related causes.

4Other internal causes includes, for example, different types of diabetes and liver cirrhosis.
5The comparison is not perfect, because we run different regression. Miller et al. (2024) use

only light smoke, whereas I use all smoke, which slightly increases my estimates (still, most smoke
coverage is classified as light coverage), and I study mortality over 60, instead of over 65, which
slightly decreases my estimates, since death rates and mortality effects are lower among those
60-65.
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more affected by air pollution, including differences in baseline health, differences

in exposure due to time spent outside, and the accessibility of healthcare during

acute need.

To examine potential reasons for the large difference in mortality effects, I study

heterogeneity within Mexico. One possible explanation is the difference in baseline

air pollution, which is twice as large in Mexico compared to the U.S. However,

I study heterogeneity by baseline air pollution across municipalities within Mex-

ico, and I do not find significant differences in mortality effects. Another possible

explanation is differences in baseline health. Mexico ranks among the countries

with the highest rates of diabetes in the world.6 When studying mortality rates by

differences in municipality-level diabetes rates, there is some indication that munic-

ipalities with higher rates are more affected, but the difference is not statistically

significant. The same is true for municipality obesity rate and rate of people suffer-

ing hypertension. I also study heterogeneity by a municipality-level development

index7 A lower municipality development index is associated with a slightly higher

estimated mortality effect, but again the difference is not statistically significant.

Last, I study heterogeneity by income. I find that lower income municipalities have

higher mortality from wildfire smoke compared to high income municipalities, and

this difference is statistically significant. This suggests that the combination of

different individual factors of health and development, which are correlated with

income, can together explain some of the heterogeneity in mortality effects.

My paper contributes to the academic literature in several ways. First, it adds

to a growing, quasi-experimental economics literature on the causal effect of air

pollution on mortality. Much of the prior work in this literature has been con-

ducted in the United States (Chay et al., 2003; Chay and Greenstone, 2003; Currie

and Neidell, 2005; Currie et al., 2009; Moretti and Neidell, 2011; Deschênes and

Greenstone, 2011; Deschênes et al., 2017; Schlenker and Walker, 2015; Knittel et al.,

2016; Deryugina et al., 2019). Studies investigating mortality from air pollution in

less developed countries mostly focus on infant mortality (Gutierrez, 2015; Arceo

6Based on World Bank data: https://data.worldbank.org/indicator/SH.STA.DIAB.ZS.
7Values from 2014, calculated by the Human Development Research Office (OIDH) in Mexico

using United Nations Development Programme methodology.

5

https://data.worldbank.org/indicator/SH.STA.DIAB.ZS


et al., 2016; Adhvaryu et al., 2024). Both of the studies conducted in Mexico study

infant health, and they find mixed results. Gutierrez (2015) finds that there is

some suggestive evidence that infant mortality from air pollution is higher in lower

socio-economic status municipalities, while Arceo et al. (2016) compare their esti-

mates of infant mortality in Mexico City with U.S. estimates and find that infant

mortality is similar or even lower in Mexico City. My paper uses high-frequency,

nationwide data over 13 years to provide causal estimates for all age mortality

from air pollution. These estimates inform the ongoing policy discussion about

pollution in developing countries. They also underline the magnitude of the air

pollution problem. Even when studying a rare outcome such as mortality, I find

significant effects from air pollution, suggesting a large negative impact on acute

health overall, both in terms of other negative short-term health outcomes from

transient pollution, which I am unable to measure directly, as well as long-term

impacts, which are generally harder to estimate causally.

Second, my paper contributes to a recently developing literature on (wildfire)

smoke (e.g. Sastry (2002); Jayachandran (2009); Rangel and Vogl (2019); Aren-

berg and Neller (2023); Miller et al. (2024)). Of these, Sastry (2002) studies adult

mortality from one extreme wildfire event in the context of a developing country,

although they don’t have a direct measure of smoke and instead use PM10 con-

centration. They are also limited to study one extreme event, rather than typical

exposure to wildfire smoke throughout the year, which is arguably better suited

to study the typical mortality effects of smoke. The other papers in this category

study infant mortality (Jayachandran, 2009; Rangel and Vogl, 2019) or are again

focused on the United States (Arenberg and Neller, 2023; Miller et al., 2024). Air

pollution from wildfires is a growing concern, as it represents a large share of small

particulate air pollution. This paper provides new, important estimates of the mor-

tality effects of wildfire smoke for different age groups and in regions with different

development.

The remainder of this paper is structured as follows. Section 1 describes the

data. Section 2 explains the empirical strategy. Section 3 presents the main results,

as well as robustness checks, and section 4 presents heterogeneity results. In section

5, I conduct a cost analysis. Section 6 concludes.
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1 Data

I use three main sources of data to estimate the effect of wildfire smoke on mor-

tality. First, I measure daily smoke exposure using high-frequency satellite images

from the U.S. National Oceanic and Atmospheric Administration (NOAA). Sec-

ond, I supplement this data with air quality measures from local pollution moni-

tors collected by the Mexican National Institute of Ecology and Climate Change

(SINAICA). Finally, I combine this with administrative mortality records from

Mexican National Institute of Statistics and Geography (INEGI).

1.1 Smoke data

The smoke data are derived from daily satellite images, analyzed by NOAA. This

data product was first published in 2003 to provide real time data on wildfires

and wildfire smoke over all of North America, including Mexico. I use data from

September 2006 through the end of 2019. Typically, two satellite images are taken

during daylight hours and are combined into one daily smoke coverage file. Analysts

can use the consecutive images to help distinguish smoke from clouds or snow

coverage, but other sources of smoke, e.g. agricultural burns, are not distinguished

in the data, a fact I address in the robustness section. The HMS then publishes

one file per day, containing the location of all detected smoke plumes. I take the

union of all smoke outlines to be the coverage area on that day, and calculate a

daily measure of smoke cover at the municipal level by measuring the area of the

municipality that is covered by smoke, and classifying a municipality as treated

if at least 95% of its area are covered by smoke on that day.8 I choose 95% as a

cutoff to allow for some numerical noise in the geographical overlap calculation, and

I show in Figure 1 that the cutoff of 95% is not decisive. Conditional on some part

of the municipality being covered by smoke, in almost 90% of observations then the

entire municipality is covered, which is due to the size difference of municipalities

and average smoke plumes. The HMS also has daily fire date, which I use to create

8While the data include a density variable for each smoke plume starting from 2009 (low,
medium high density), in this analysis I treat any smoke coverage the same for the purposes of
my analysis.
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an indicator variable that is equal to one if a fire was detected inside municipality

boundaries on that day.

1.2 Air Pollution data

I supplement the smoke indicator with air quality monitoring data collected by the

Mexican National Institute of Ecology and Climate Change (SINAICA). I collect

hourly PM2.5, PM10, O3 and CO concentration levels and take the average of all

available measurements on a day to get a daily measure. To calculate a pollu-

tion measure at the municipal level, I average over all monitoring stations within

municipality boundaries. The availability of monitoring data varies between the

different types of pollutants, from 119,006 municipality-day obsevations for PM2.5

and 224,281 observations for ozone (O3). I also collect model-derived PM2.5 mea-

surements for the entire study period from 2005 through 2019 from the American

National Aeronautics and Space Administration’s MERRA2 reanalysis project,

which incorporates satellite measurements of air pollution to estimate pollution at

specific grid points. For this I match each municipality to the closest grid point

value, and I use this data for baseline pollution classification in the heterogeneity

section.

1.3 Mortality data

My mortality data come from the Mexican National Institute of Statistics and

Geography (INEGI). Every year, INEGI publishes mortality files at the individual

level. Working with administrative records is a great advantage, as Mexican records

are considered to be of high quality (Hernández et al., 2011), and they contain the

date of death, the municipality where the death occurred, date of birth and a

cause of death categorization, as well as some demographic characteristics of the

deceased. I aggregate daily deaths at the municipality level. To calculate my main

outcome variables, mortality per million, I combine the mortality records with

population data from the 2000, 2010 and 2020 censuses.9 When studying cause of

9For years in between censuses, I linearly interpolate municipality-level population counts.

8



death, I aggregate daily mortality within each of the cause of death categories I

study.

1.4 Additional data

I collect additional municipality-level data on development, education and health to

study heterogeneity in mortality effects, these data come from INEGI. For weather

controls, I use data from the NARR, a reanalysis model that incorporates large

quantities of observational data into a regional climate model, which then provides

temperatures, precipitation and additional climate variables on a grid.

2 Methodology

In my main specification, I use a regression model with fixed effects to estimate

the reduced form effect of wildfire smoke exposure on mortality. I include munic-

ipality by week-of-year fixed effects so that the effect is identified from within

municipality-season variation. Additionally, I include date fixed effects, which

control for nation-wide daily shocks, such as national holidays, which can affect

mortality. Weather controls are contained in Xit and include for temperature,

precipitation and precipitation squared.

yit = α + Σ15
k=−15βksmokei(t−k) +Xit + γiw + γt + εit (1)

The treatment variable of interest, smokeit, is equal to one if at least 95% of

municipality i’s area was covered by smoke on date t and is 0 otherwise. I include

fifteen leads and lags of smoke exposure in the regression due to concerns about

serial correlation that could otherwise bias my point estimates, and to provide

some evidence of the validity of the estimation strategy. If the specification is

correct, then coefficients on the leads of smoke should be close to 0, since smoke

in the future should not affect mortality today. In the results tables, I present

β0, the coefficient on smokeit, as well as the sum Σ2
k=0βk, which is the sum of the

coefficients on smoke and two lags of smoke, and can be interpreted as the effect of
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smoke exposure on the day of smoke and the two following days. I provide plots of

the lead and lag coefficients to examine the impact of smoke exposure over time.

The identifying assumption of my regression is that conditional on included

fixed effects and leads and lags, smokeit is uncorrelated with the error term εit.

The validity of this assumption relies on the idea that smoke exposure in a given

municipality on a given day depends on prevailing wind patterns and fire locations

on that day, which are plausibly exogenous to other causes of mortality in the

municipality. In the robustness analysis I will probe the validity of this identifying

assumption.

In regressions that have mortality as the dependent variable, I weigh observa-

tions by the relevant population in order to improve the precision of my estimates

and avoid over-weighting small municipalities. In all regression I cluster standard

errors at the municipality level, given that errors are likely to be correlated between

daily observations from the same municipality.

3 Results

3.1 Air Pollution

Table 2 presents the coefficient on smoke exposure from equation 1. Columns 1

shows the effect of a day of smoke on the concentration of fine particulate matter,

particles smaller than 2.5 µm in diameter. A day of smoke increases the concen-

tration of PM2.5 particles by 2.27 units, which is an increase of approximately 10%

over the daily mean measured at the ground-based monitors in my sample. Col-

umn (2) shows the effect of smoke on PM10, which are slightly larger particulate

matter. Smoke increases PM10 concentration by 3.72 units, an increase of 8% over

the daily mean.

In panel (a) of Figure 5, I plot the coefficients on the leads and lags of smoke

from the main equation 1 with PM2.5 as the dependent variable. The coefficients

on the leads of smoke are centered around zero, lending credibility to the research

design, since future smoke should not increase air pollution today. However, I do

find a significant increase in air pollution on the day before the smoke day, which
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can be explained by the fact that satellite pictures are taken during daylight hours,

while pollution monitors run 24 hours. Hence, Smoke clouds that start covering

the municipality during the night will already increase air pollution, but will only

show up in the smoke dataset on the next day. After the smoke day, air pollution

remains elevated for two days before returning back to centering around zero. The

statistically significant increases in ground-measured air pollution show that the

satellite derived smoke measure is a good proxy for increased air pollution on the

ground.

3.2 Mortality

Table 3 shows the effect of wildfire smoke on mortality for 10-year wide age groups

The table presents the coefficient on smoke from equation 1, as well as the sum

of the coefficients on smoke and two lags of smoke, which estimate the increase in

mortality one day and two days after a smoke event. I find no short-term mortality

effects from wildfire smoke for all age groups under 50 years old, this is true for the

one day mortality represented by the coefficient on smoke β0, as well as the 3 day

summed mortality. For the group 50-59 in column (6), there is potentially a small

increase in mortality, but this effect is not statistically significant, and mortality

over 3 days does not increase for this group.

The three oldest age cohorts on the other hand all show statistically significant

increases in mortality. In the age cohort 60-69, a day of wildfire smoke increases

mortality by 1.25 deaths per million on the day of the smoke, and by 1.76 deahts

per million over 3 days, an increase of 4.8% over the average daily mortality of that

group. For those age 70-79, mortality on the smoke day increases by 1.68 deaths

per million, and by 2.4 deaths per million over three days, which is an increase of

2.8% percent over average daily mortality. I find the largest mortality effect for the

age group of those over 80 years old, where mortality increases by 4.8 deaths per

million on the day of smoke and by 12.08 deaths per million when including the two

days following the smoke. This is an increase of 4.9% over average daily mortality

in that group. Previous studies in the U.S. such as Deryugina et al. (2019); Miller

et al. (2024) were limited to study mortality and health effects in the Medicare
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population, people over 65, so the null result of this paper for younger age groups

adds to our knowledge and shows that the U.S. papers are, despite their data

limitations, able to study the groups most affected by smoke induced air pollution.

These results are robust to different

A concern when studying the short-term mortality effects is that some deaths

might have occurred within a couple of days, with or without the smoke exposure.

This mechanism of inter-temporal displacement of mortality is called ”harvesting,”

by which a weak individual, who would have died within a short amount of time

without any external influences, could die earlier because of the additional stress

caused in this case from the wildfire smoke. This is a concern, because if that is the

case, then the mortality estimated in this paper would not represent a significant

cost to society, because those individuals most affected would have died shortly

anyway, with or without the exposure to smoke.

In the main specification of this paper, this effect would show up in the coeffi-

cients on the lags of wildfire smoke. If increased mortality on the smoke day was

offset by an equally large decrease in mortality in the next week, then that would

show up as a negative coefficient on the eighth lag of smoke. Panel (b) of Figure

5 plots the coefficients on smoke and 15 of its leads and lags. Mortality increases

on the day of smoke, marked at 0 in the figure, and stays elevated for two days,

before returning back to zero. As with the effects on air pollution, mortality is

not affected by future smoke, another indicator of the validity of the estimation

strategy. If these results were driven by harvesting (from within 15 days of the

smoke event), then that would show up through negative coefficients on the lags

of wildfire smoke. Those coefficients are all centered around zero and statistically

insignificant, making short-term harvesting less likely to be the cause of the large

mortality effects I find, at least within two weeks of the exposure to wildfire smoke.

3.3 Cause of Death

In this section I study the heterogeneity of treatment effects. First, I will show

results by different listed cause of mortality on the death certificate. Then I will

compare my results to results from a comparable study in the U.S. and explore
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different potential mechanisms to explain the differences in results. The biological

mechanisms of the acute effects of air pollution on the human body is an open

area of research, but studies have found that air pollution can cause stress to the

body, including the cardio-vascular system, inflammation, and other changes that

can increase the risk of acute adverse health impacts (Mannucci and Franchini,

2007). Table 5 presents the effect of wildfire smoke on mortality by different cause

categories, for mortality over 60. The first column shows deaths listed as caused

by circulatory causes. The most commonly listed cause in this category are heart

attacks, it also includes other causes related to the circulatory system such as

strokes or acute hypertension. Deaths in this category increase by 0.74 deaths

per million on the day of the smoke event, and by 1.92 deaths per million over

three days. Column (2) shows results for respiratory causes, the most common

of which is chronic pulmonary disease. In this category I don’t find a significant

increase in mortality from smoke induced air pollution. Other internal causes,

which includes all other internal causes of mortality, such as for example different

forms of diabetes or liver cirrhosis, increase by 1.08 deaths per million on the day of

smoke and 1.6 deaths per million over three days. External causes, such as car or

work accidents, do not increase. The results from this analysis are in line with the

view that air pollution can exacerbate existing conditions and thereby effect those

individuals the most who are already weaker because of their underlying health.

My results are consistent with prior literature, such as Deryugina et al. (2019),

who study the effect of air pollution on mortality in the United States using wind

direction as an instrument for pollution and who find that air pollution increases

cardiovascular mortality rates, cancer related deaths and other internal causes, but

does not increase deaths from external causes.

3.4 Robustness Checks

I run different variations of the main estimating equation to show that the results

I am finding are not dependent on particular choices regarding the estimating

strategy. In table 6 I show that different specifications of weather controls yield

similar results to my main specification, which is reproduced in column (1). Column
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(2) reports results when not controlling for any weather, and column (3) controls

for bins of temperature rather than a linear control, the three day mortality effects

estimated from these regression are close to the main estimate of 3.54 deaths per

million, with 3.77 and 3.11 deaths per million respectively. In column (4) I address

the concern that results could be driven by smoke from agricultural burns, instead

of wildfire smoke. This could present a problem if agricultural burns are correlated

with unobservables that also affect mortality rates. In this regression, I exclude

the months of March through May from the sample, which are the three months

with the highest activity of agricultural burn activity in Mexico. The estimate

for the one day effect from wildfire smoke of 2.23 deaths per million is close to

the main estimate of 1.93 deaths per million, and estimated three day mortality is

5.67 deaths per million, slightly larger than the main estimate, suggesting that my

results are not driven by agricultural smoke that may be correlated with economic

activity.

To show that my results are not driven by the choice of the number of leads

and lags of smoke, I run the main regression from 1 with no leads or lags, 7, 15

(main specification) and 20 leads and lags and present the results in appendix table

7. The estimate for the one day smoke effect is larger when no leads and lags are

included, which is expected, since conditional on smoke today, the likelihood of

the presence of smoke yesterday is quite high, and we are now not controlling for

yesterday’s smoke. For 7, 15 and 20 leads and lags, the one day smoke effects are

all very similar at 1.87, 1.93 and 1.96 deaths per million, respectively, as are three

day smoke effects, which are estimated to be 3.41, 3.54 and 3.60 deaths per million,

showing that the choice of how many leads and lags to include in the regression is

not a main driver of the results. Note that the number of observations for each of

these regressions is slightly different, since the number of leads and lags determines

how many observations need to be dropped from the beginning and end of the

sample period due to missing values.
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4 Heterogeneity

4.1 Comparison to estimates from the U.S.

The mortality effects from wildfire smoke I find in Mexico are large compared to

previous papers. Comparing directly with Miller et al. (2024), while they find a

comparable increase in PM2.5 air pollution caused by wildfire smoke in counties in

the United States, they estimate that a day of light smoke causes an increase in

3-day mortality for those over 65 years old of 1.33 deaths per million (confidence

interval: [0.76,1.90]). For medium and thick smoke days, they find increases in

mortality of 1.63 and 1.42 deaths per million, respectively. My estimate for the

3-day mortality effect from smoke exposure10 in Mexico is 3.54 deaths per million,

at least two times the size of the effect estimated for the elderly population in the

U.S., with confidence intervals that don’t overlap.

One explanation could be the difference in ambient air pollution, which is ap-

proximately twice as high in Mexico compared to the U.S., according to different

sources such as the World Bank. Ambient air pollution has been linked to negative

health outcomes (Mannucci and Franchini, 2017), but whether higher levels of un-

derlying air pollution positively or negatively affect smoke induced mortality is not

well understood. If higher ambient air pollution is a stressor, then people living

in higher air pollution environments might be more susceptible to negative effects

from air pollution. To test this theory I can study the heterogeneity by ambient air

pollution within Mexico. I split my sample into four quartiles of average baseline

PM2.5 air pollution on non-smoke days11, and separately estimate the mortality

effects in each sample. The results for 3-day mortality are presented in figure

6. Even though the point estimates look like they are slightly different between

the quartiles, the difference between the first and last quartile is not statistically

significant.

10I don’t distinguish between different intensities of smoke, but light smoke is the most common.
11Because the sample of ground-based PM2.5 observations is so small, I use satellite-derived

pollution values from a NASA atmospheric model for this heterogeneity analysis.
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4.2 Heterogeneity within Mexico

Mexico and the United States differ in more than just ambient air pollution. Mex-

ico is considered a developing or middle-income country, average income is low

compared to the United States. While income itself is unlikely to directly affect

mortality from air pollution, it is correlated with a lot of factors that could.

To test whether people in lower income municipalities are differently affected

than those in high income municipalities, I split the sample into four quartiles by

municipality average household income, and run the main regression from 1 sepa-

rately for each quartile. The results are presented in figure 7. Each dot represents

the 3-day mortality estimate on the y-axis, and the quarterly income in Mexican

pesos in that quartile on the x-axis. The point estimates suggest that there is a dif-

ference in effect sizes by income quartile, with a mortality effect approximately of

5 deaths per million from a day of smoke in the lowest income quartile and slightly

below 2 deaths per million for those in the highest income quartile. In this case,

the difference between the lowest and the highest income quartiles is statistically

significant at the 5% level. To better understand this heterogeneity of effects by

income, I repeat the split analysis for the sample of over 70 year olds and over 80

year olds, the results are presented in the top panel of figure 8 and show that for

all age groups, mortality from smoke is significantly higher in lower average income

municipalities.

To try and better understand what could cause this heterogeneity by income, I

repeat the same for different municipality-level indicators of health and socioeco-

nomic development, for each plotting the difference between the lowest and highest

quartile and the 95% interval for this difference, shown in the bottom three panels

of figure 8. For all of the regressions used for the bottom three panels, the outcome

variable is deaths per million over 60. None of the environmental factors show

significant heterogeneity between quartiles. The difference between high and low

PM2.5 municipalities, as discussed previously, is not significant, and neither are the

differences for the hottest versus coolest municipalities, or those with higher and

lower precipitation.

The health panel shows heterogeneity by quartiles of municipality-level rates
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of obesity, hypertension and diabetes. Plotted is the difference between the lowest

quartile of obesity, hypertension and diabetes rates and the highest quartile, which

for obesity and hypertension are negative, suggesting that effects are slightly higher

in municipalities with higher rates of obesity and hypertension, but these differ-

ences are not statistically significant. The bottom panel of the figure shows some

development related correlates of income, an education index, access to healthcare,

development index, and extreme poverty rate. Here, the only significant difference

between highest and lowest quartiles is found for the poverty rate, where municipal-

ities with the highest rates of extreme have higher mortality effect by 3.91 deaths

per million compared to municipalities with the lowest poverty rates, consistent

with the results of heterogeneity by average income. While not statistically signif-

icant, the mortality effects from air pollution are estimated to be 1.93 deaths per

million higher in those municipalities in which a higher rate of the population lacks

access to healthcare (p-value: 0.19).

5 Cost Analysis

Policy makers have some control over wildfire frequency and severity through a

variety of different mitigation strategies, such as prescribed burns, wildfire sup-

pression, and firefighting.12 These strategies are complex and cost intensive. The

results form this paper can help policy makers better understand the costs of wild-

fire smoke, and thereby help policy makers make better decisions about the optimal

level of wildfire mitigation. In the following section, I will use the point estimates

on mortality to estimate the social cost of the short-term mortality caused by

wildfire smoke in Mexico. Additional to providing policy makers with important

information on the costs of wildfire smoke, this analysis can also provide context on

the size of the mortality effects estimated in this paper and the changes in impacts

over time.

To estimate the overall impact of wildfire smoke on short-term mortality in

Mexico over the time period of study, 2007 through 2019, I take the 3-day estimates

12While prescribed burns still cause air pollution, there is some evidence to suggest that it is
less than the pollution from avoided larger wildfires (Selimovic et al., 2020)
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from table 3 for those three groups with statistically significant effects, 60-69,

70-79 and over 80 years old, which are 1.76, 2.40 and 12.08 deaths per million,

respectively. For each municipality, I multiply the population in each age group

with the estimated mortality effect and the number of smoke days in that year.

Over the entire 13 year period, I estimate that in the age group 60-69 there are

1,683 excess deaths caused form wildfire smoke. For the group 70-79, I estimate

1,232 excess deaths, and finally for those over 80 I estimate 3,076 excess deaths

from wildfire smoke. Note how the total number of excess deaths are higher for the

population in their 60s compared to those in their 70s, despite the smaller increase

in deaths per million, because the population in their 60s is a larger group. On

average, this additional mortality adds up to 428 deaths per year from short-term

mortality caused by wildfire smoke.

Because mortality is concentrated in the elderly, basing a cost analysis on the

total number of deaths might overstate the true social cost of smoke induced air

pollution. To address this concern, I use a World Health Organization life table for

Mexico to calculate conditional life expectancy at the center of each of the three

age bins at 65 years, 75 years and 85 years old. At 65 years old, the conditional life

expectancy is 17.95 years, at 75 it is 11.34 years, and at 85 it is 6.39 years. I can use

these values together with the previously calculated excess mortality to estimate

life years lost. For the period from 2007-2019, I estimate 30,207 life years lost in

the age group 60-69, 13,971 life years lost for people 70-79 and 19,656 life years

lost in the age group over 80. The total number of life years lost in the period of

study adds up to 63,834 life years. The average life years lost per death estimated

in this analysis is approximately 10 years. A weakness in this approach is that it

assumes that those who died from exposure to wildfire smoke had the average life

expectancy of their age group. Considering the results from table 5 by cause of

death, it is likely that those who died were weaker and had a lower life expectancy.

This is what prior from the U.S. by Deryugina et al. (2019) suggests is happening.

To calculate costs I use the value of statistical life, a tool often used in cost-

benefit analysis that assigns a monetary value to life. The Mexican government
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has previously used USD 1.99 million13 in cost-benefit analyses. To estimate the

welfare costs, I could multiply this number my the excess mortality caused from

wildfire smoke, which would yield annual costs of USD 851 million. This would

arguably overstate the true social costs considering that mortality is concentrated

in the elderly. Because of that, I use the value of USD 1.99 million to derive a

dollar value for a statistical life year, which I can then multiply with the values

estimated for life years lost in the previous paragraph. To do so, I assume that

the value of statistical life can be understood as the value assigned to the median

Mexican’s life. The median Mexican in the period of analysis is 28 years old and

has a conditional life expectancy of 48 years, hence a value of a statistical life year

implicit in the USD 1.99 million value of a statistical life can be calculated to be

approximately USD 41,562.14

The average annual costs calculated using value of statistical life year are then

USD 189 million, and total costs from 2007-2019 are USD 2.65 billion. Figure 9

plots the social costs by year calculated using value of statistical life years. 2019

was the year with by far the most wildfire smoke, leading to estimated costs of

USD 1 billion in that year alone. Recall the limitations of the previous section,

individuals who died from smoke are likely to be weaker, and thus would have

had a shorter life expectancy than assumed in this analysis. To be more cautious,

one can divide all cost estimates by 10, essentially assuming that the average life

expectancy of those who died was not 10, but rather just one year. In that case,

the costs from wildfire smoke induced short-term mortality in Mexico in 2019 are

still estimated to be USD 100 million.

6 Conclusion

In this paper I study the effect of air pollution on mortality, utilizing plausibly

exogenous variation in air pollution caused by the wind direction and fire loca-

tion and comprehensive administrative mortality records from Mexico. I find that

smoke coverage leads to a significant short term increase in ground measured air

132021 US Dollars.
14V LY = $1.99 million

48 = USD 41, 562.
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pollution and has a significant negative impact on mortality rates in age groups 60

years and older, while there is no detectable increase in mortality in younger age

groups. Mortality effects is larger in municipalities with lower average household

income, and effects are much larger compared to previous estimates from the U.S.

There is some suggestion that this heterogeneity in mortality effects is caused by

a combination of factors including access to healthcare facilities, development, and

baseline health. My results show that there are large costs due to excess mortal-

ity from air pollution of approximately USD 189 million per year from increased

short-term mortality alone, implying potentially much larger costs when taking

into account less severe health outcomes caused my pollution.

My study provides causal evidence on the effect of air pollution and wildfire

smoke using nationwide data, and the results provide valuable information to policy

makers, who have to balance the costs of fire and pollution mitigation in a world

where wildfires are becoming more common and more destructive, and thereby also

a growing source of overall air pollution. These estimates are of particular interest

to policy makers in developing countries who were previously faced with a large

literature focused on the U.S. and a dearth of evidence from settings that are more

comparable to their own.

Beyond studying air pollution in a less developed country, this paper also pro-

vides estimates of the effect of smoke exposure on mortality for all age groups.

Previous studies were sometimes limited to data on elderly and infant mortality,

while administrative mortality records allow me to study effects throughout all

age groups, showing that mortality effects are mainly concentrated in the elderly.

My paper adds to and extends the growing literature on negative health effects

of wildfire smoke and highlights the importance of further study of the socioeco-

nomic determinants of differences in mortality effects from air pollution and wildfire

smoke.
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Figure 1

The figure shows the distribution of smoke coverage, conditional on municipality
smoke coverage being greater than 0 on that day. Smoke plumes are usually large
compared to municipalities, therefore conditional on being covered by any smoke,
municipalities are most often entirely covered.
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Figure 2: Average Number of Municipality Smoke Days

Figure plots average annual smoke days at the municipality level in the years 2007-
2019. Population weighted average smoke coverage per year is 9.64 days.
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Figure 3: Number of Municipality Smoke Days by Year

Figure plots annual smoke days by year at the municipality level from 2007-2019.
Population weighted average smoke coverage per year is 9.64 days.
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06/10/2019 06/11/2019 06/12/2019

Figure 4: Smoke Cover on Three Consecutive Days in 2018 and 2019

The figure shows smoke plumes over Mexico on three consecutive days in June of
2018 (top panels) and the same three days in June 2019 (bottom panels).

(a) (b)

Figure 5: Effect of Wildfire Smoke on Air Pollution and Mortality

This figure plots coefficients on the leads and lags of smoke of equation 1. Depen-
dent variable is average daily PM2.5 concentration (panel (a)) and mortality over
60 per million (panel (b)). The estimate shown for Day 0 is the point estimate
reported in tables for ”Smoke”. Regressions include municipality by week-of-year
and date fixed effects and controls for temperature and precipitation. Estimates
are weighted by the population over 60. Standard errors are clustered by munici-
pality.
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Figure 6: Treatment Effect by Baseline PM2.5

Figure plots the 3-day mortality from wildfire smoke by four different quartiles of
baseline PM2.5 air pollution on days without smoke. Each point estimate is from
a separate sub sample regression. Standard errors are shaded grey and clustered
by municipality.
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Figure 7: Treatment Effect by Quarterly Income

Figure plots the 3-day mortality from wildfire smoke by four different quartiles of
quarterly income. Each point estimate is from a separate sub sample regression.
Standard errors are shaded grey and clustered by municipality.
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Figure 8: Treatment Heterogeneity by Socioeconomic Indicators

Figure plots the difference in 3-day mortality from wildfire smoke between the first
quartile and the last quartile of the category listed on the left side of the figure.
Standard errors are clustered by municipality.
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Figure 9: Welfare Cost by Year

The figure plots the annual welfare costs of mortality from wildfire smoke, estimated
by using the value of statistical life year method.
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Table 1: Summary Statistics

Mean Std. 50% 90%

Smoke Days per Year 9.75 58.85 0.00 0.00

Length of smoke event (Days) 3.42 4.71 2.00 8.00

Quarterly Household Income (Pesos) 49,528 15,427 49,851 69,380

PM2.5 21.73 10.78 20.00 35.50

PM10 46.87 24.17 42.50 78.00

Municipality population Age 60-69 2,973.18 9,334.10 799.70 4,826.61

Municipality population Age 70-79 1,592.76 4,751.57 494.05 2,684.52

Municipality population over 80 789.48 2,217.81 273.60 1,361.49

Daily mortality per million over 60 79.83 117.36 62.66 171.34

Daily mortality per million over 70 136.38 218.39 97.79 306.11

Daily mortality per million over 80 244.39 498.87 96.92 593.73

The table presents summary statistics which are calculated at the municipality-
day level. All averages are calculated weighting by municipality population over
60, except for the mean of population over 60.

Table 2: Effect of Wildfire Smoke on Air Pollution

(1) (2) (3) (4)

PM2.5 PM10 O3 SO2

Smoke 2.2745 3.7239 0.0006 0.0001

(0.2542) (0.2790) (0.0002) (0.0001)

Dep. Var. Mean 21.2995 47.3837 0.0216 0.0042

Municipalities 78 83 91 86

Observations 118,183 188,194 222,834 202,169

Table reports main estimates β0 of equation 1 for PM2.5 and PM10. Standard
errors are clustered by municipality and reported in parentheses.
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Table 4: Effect of Wildfire Smoke on Mortality by Income

Lowest Second Third Highest

Smoke 3.10 1.51 2.22 0.29

(0.66) (0.69) (0.62) (0.94)

3 Days:
∑2

k=0 βk 5.22 3.04 3.67 1.75

(0.94) (0.93) (1.28) (1.35)

Dep. Var. Mean 72.08 76.27 84.73 92.53

Municipalities

Observations 7,758,596 3,046,468 767,652 289,680

Table reports main estimates β0 of equation 1, with the sample split into four
population-weighted quartiles of municipality median income. Dependent variable
is the mortality over 60 per million. Estimates are weighted by the population over
60. Standard errors are clustered by municipality and reported in parentheses.

Table 5: Effect of Wildfire Smoke on Mortality by Cause

(1) (2) (3) (4)

Circulatory Respiratory Other internal External

Smoke 0.74 0.07 1.08 0.04

(0.21) (0.11) (0.26) (0.06)

3 Days:
∑2

k=0 βk 1.92 0.08 1.60 -0.06

(0.30) (0.18) (0.39) (0.09)

Dep. Var. Mean 26.31 8.87 43.85 2.51

Municipalities 2,457 2,457 2,457 2,457

Observations 11,886,966 11,886,966 11,886,966 11,886,966

Table reports main estimates β0 of equation 1 for different listed causes of mortality.
Dependent variable is the mortality over 60 per million by the cause specified at the
top of the column. Estimates are weighted by the population over 60. Standard
errors are clustered by municipality and reported in parentheses.
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Table 6: Robustness of the Effect of Wildfire Smoke on Mortality

(1) (2) (3) (4)

Smoke 1.93 2.06 1.72 2.23

(0.37) (0.37) (0.37) (0.65)

Temperature 0.14 -0.02

(0.04) (0.04)

Precipitation -0.16 -0.15 -0.16

(0.01) (0.01) (0.02)

3 Days:
∑2

k=0 βk 3.54 3.77 3.11 5.67

(0.56) (0.56) (0.56) (1.01)

Dep. Var. Mean 81.54 81.54 81.54 82.26

Municipalities 2,457 2,457 2,457 2,457

Observations 11,886,966 11,886,966 11,886,966 8,948,394

Table reports estimates β0 for different specifications. Column (1) is the main
specification from 1. Column (2) omits weather controls, column (3) controls for
temperature bins, and column (4) excludes the three months with the highest
agricultural burn activity in Mexico. Standard errors are clustered by municipality
and reported in parentheses.
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Appendix

Table 7: Robustness of Results to More and Fewer Leads and Lags

(1) (2) (3) (4)

0 7 15 20

Smoke 2.56 1.87 1.93 1.96

(0.39) (0.38) (0.37) (0.37)

3 Days:
∑2

k=0 βk 3.41 3.54 3.60

(0.59) (0.56) (0.56)

Dep. Var. Mean 81.49 81.53 81.54 81.55

Municipalities 2,457 2,457 2,457 2,457

Observations 11,960,676 11,926,278 11,886,966 11,862,396

Table reports main estimates β0 of equations that are like 1, but with different
numbers of leads and lags of smoke, indicated at the top of the column. Note that
sample sizes are slightly different because observations from the beginning and
end of the sample need to be excluded because of missing lead/lag observations.
Dependent variable is the mortality over 60 per million. Estimates are weighted by
the population over 60. Standard errors are clustered by municipality and reported
in parentheses.
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